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Abstract 

Differential calculus on the space of asymptotically linear curves is developed. The calculus is 
applied to elucidate the integrability of the vortex filament equation. 0 1998 Elsevier Science B.V. 
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1. Introduction 

The vortex filament equation [l] is a nonlinear evolution equation describing the time 
development of a very thin vortex tube. The equation is derived from the dynamics of three- 
dimensional incompressible fluid with the local induction approximation and is written as 

3 = Kb, (1) 

where y is the curve of the vortex filament parametrized by the arclength, dot stands for 
the differential with respect to the time, K is the curvature of y, and b is the bi-normal 
vector along y . It is well known that the vortex filament equation (1) is closely related to 
the cubic nonlinear Schriidinger (NLS) equation, and the Hasimoto map provides a connec- 
tion between them [2]. The NLS equation is an infinite-dimensional completely integrable 
Hamiltonian system [3]. 

Marsden and Weinstein [4] constructed a Hamiltonian description of the vortex filament 
equation in their study on the moment map for the action of the unimodular diffeomorphism 
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group of E-13. Langer and Perline [5] introduced the space BAL - the space of balanced 
asymptotically linear curves (see Section 2) - as a phase space for the system of vortex 
filament, and showed that the Hasimoto map is a Poisson map from BAL with the Marsden- 
Weinstein Poisson structure to (a certain equivalence class of) the phase space of the NLS 
system with the ‘fourth’ Poisson structure. This result says that the Hasimoto map induces 
constants of motion in involution for the vortex filament equation as the pull-back of those 
for the NLS system, hence the vortex filament equation can be understood as a completely 
integrable system. Further, Langer and Perline found a recursion operator, which generates 
infinite sequence of commuting Hamiltonian vector fields on BAL. 

For some typical integrable Hamiltonian systems, such as the NLS equation, the inte- 
grability is studied from various aspects and many remarkable structures are known to 
exist [3,6-131. It is therefore natural to ask whether the same or similar structures exist for 
the system of vortex filament. In this paper we focus on structures that are described in the 
language of differential geometry. For this aim, we introduce a differential calculus on BAL 
in an algebraic manner. Extensively applying the calculus, we prove the hereditary prop- 
erty [9,1 l] of the recursion operator, Hamiltonian pair [7,8], and master symmetries [lo]. 
The asymptotic boundary condition defining BAL is critical for this result; a different situ- 
ation is encountered when the curve of a vortex filament is supposed to be a loop [ 141. 

The paper is organized as follows: In Section 2, the definition of BAL is clarified. It 
involves introducing a further condition to the conditions defining BAL of [5]. Also in this 
section, some basic notions are described, and several useful formulae for the variational 
calculus on BAL are summarized. In Section 3, carefully specifing what are admissible 
vector fields and what are admissible functionals, we define a differential calculus on BAL. 
In Section 4, several structures related to the integrability are investigated. 

2. Balanced asymptotically linear curves 

Let APC be the space of infinitely extended, arclength-parametrized smooth curves in the 
Euclidean space R3 with the standard metric ( , ). We imply by the letter y an element of 
APC and by s the parameter for it; s H y(s) is a smooth map R + R3 such that a y (s)/i3s 
is a unit vector in the tangent space Ty(s) R3. 

A map APC x [w + R is referred to as a scalar field on APC. A map x : APC x Iw -+ 
u T,(,)!R3 such that x(v, s) E Ty~,~R3 is referred to as a tangent field (the term ‘vector field’ 
is reserved for the differential calculus). Here, Ij stands for the direct-sum with respect to 
the index (v, s) E APC x R!. Similar terminology is used also for a subset BAL, a space 
that we wish to manifest in this section. 

The differential operator with respect to s is denoted by i3, (when acting on scalar fields) 
or by V, (when acting on tangent fields). These operators satisfy 

akfd = am + fad, (2) 
wfx) = (w)x + f wb adx, Y) = (v.,x, Y) + (x, v.,Y) (3) 
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for all scalar fields f, g and tangent fields x, y. As in the equations above, we will often 
surpress the argument (v, s). 

A scalar field F is called a functional if F is independent of s, i.e., a,? F = 0. 
We say a scalar field f is asymptotically polynomial-like if there exists a polynomial 

P(s) E R[s] such that f(r, s)/P(s) -+ 0 in the limit s + foe for every curve y. We 
say a scalar field f is rapidly decreasing if f(r, s)P(s) for every polynomial P(s) E R[s] 
converges to zero in the limit s + foe for every curve y. 

Let f be a scalar field. The scalar field a,; ’ f (anti-differentiation of f) and the functional 
If (definite integration of f) are defined by 

(4) 

(5) 

provided that the integrations in the equations above converge. In employing operators a,; I 
and s in the following sections, we will ensure the convergence by introducing certain rules. 
It is easy to see 

a,s a,; ’ f = aA: I a, f = f, a, s s f = a, f = 0. (6) 

a,;l(Ff) = Fa,;'f, S(FS)=F/f. (7) 

where f is a rapidly decreasing scalar field and F is a functional. 
We denote by t, n, b the tangent fields forming the F&et frame, namely, t(y, s), n(y, s) 

and b(y, s) are orthonormal vectors in TY(,)R3 satisfying t(y, s) = ay(s)/ib and the 
Frenet-Serret relation 

v,t = Kll, Vl.n = --Kt + rb, V,b = --rn. (8) 

Here, K and t are scalar fields characterized by (8), namely, K ( y ) and t (v) are the curvature 
and torsion, respectively, of the curve y . Every tangent field is uniquely written as a linear 
combination oft, n, b with the coefficients in scalar fields. 

The space BAL introduced in [5] is a subset of APC such that (a) the curvature K(Y) 

of y E BAL is non-vanishing, (b) y E BAL is asymptotic to a fixed line, e.g., to z-axis, 
and (c) ambiguity in the parametrization is completely eliminated with imposing balancing 
condition. 

To describe the balancing condition, we need to fix a reference curve yc E APC (or a 
reference line, z-axis) fulfilling the asymptotic condition as in (b). The condition (b) says the 
existence of functionals l+: BAL + R with which the asymptotic behaviour of y E BAL 
in the region s -+ foe is written as y(s & l+(y)) -+ vo(s). With these functionals, the 
balancing condition (c) for y E BAL can be written as l+(y) = I_(y). The functional 
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1 := 1+ + l- referred to as the renormalized length (relative to ~0) is well-defined, though 
the curve y E BAL c AFT is of infinite length. 

We supplement the condition (b) with prescribing how y E BAL converges to the refer- 
ence curve yu; we suppose 

K is rapidly decreasing, and 

K-‘&“K and &“t, n = 0, 1,. . . are all asymptotically polynomial-like, (9) 

where K-’ := l/~. 

In the next section we introduce a differential calculus on BAL. The action of vector 
fields on functionals in this calculus is defined to reproduce the usual variational calculus. 
Here we make a few remarks on the variational calculus and give several useful formulae. 
For more detailed description, we refer to [5]. 

Let x be a tangent field written as 

x = i?;‘(!cg)t + gn + hb (10) 

with certain rapidly decreasing scalar fields g, h. Below, x(v) is identified with a variational 
vector field along y , The restriction on x mentioned above is to force the variation to keep 
the arclength-parametrization and conditions (b) and (c). 

In this paper the variational differential operator associated with x of the form (10) is 
denoted by 6, (when acting on scalar fields) or by V, (when acting on tangent fields). For 
calculating the former, the following formulae are useful: 

6, (fg) = (44 f)g + f fixg~ (11) 

s,a,f = a,s, f, s,a,-If = as-'s,ft 6, f = s s &f3 (12) 

6, K = (n, vsvsx), (13) 

6, r = i&(/c-‘b, V~yVsx) -I- (Kb, Vsx), (14) 

6, s = 0, (15) 

6x1 = 

s 

(--Kn, x), (16) 

where f and g are scalar fields. By abuse of notation, we often use the letter s, by which 
we mean the scalar field s^ such that s^(y, S) = S, as we have done in (15). The latter can be 
calculated by the following formulae: 

Vx(f Y> = (6, f )Y + f VXY, 

V,t = (n, V,x)n + (b, Vsx)b, 

VXn = (K-lb, V,V,x)b - (n, V,x)t, 

VXb = -(b, V,x)t - (K-lb, V,V,x)n, 

(17) 

(18) 

(19) 

cw 
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where f is a scalar field and y is a tangent field. These satisfy 

& (Y, 2) = (VXY, 2) + (Y, Vxz). 

199 

(21) 

3. Differential calculus 

Let An, n E Z, be the i3,-invariant space (i.e., a,f E A, for all f E A,,) of scalar fields 
f such that C”f is asymptotically polynomial-like. The elements of A,, with n > 0 are 
rapidly decreasing. 

We notice the following properties possessed by A, : 
(al) A,, Vn E Z, is an R-vector space, 
(a2) A,, c A,I_~ (as R-vector spaces) for all n E Z, 
(a3) A_, := A0 U A-1 U . . . is a commutative associative R-algebra with the unit 1, 
(a4) (fg E A_, 1 f E Ai, g E Aj} is a subspace of Ai+i for all i, j E Z, 
(a5) & is an R-linear operator such that &(A,) c A, for all II E Z, 
(a6) a,$:’ and [ are R-linear operators such that a,; ’ f E A0 and if E AIJ for all f E Al, 
(a7) K E AI, ~-l E A-1, and t, S, 1, 1 E Ao, 
(bl) a,$ is a derivation of A_+,, i.e., Eq. (2) hold for all f, g E A_,, 
(b2) Eqs. (6) and (7) hold for all f E A2 and F E Ker &, 

(b3) /(fa,5:‘g) = - &$;‘f) for all f, g E AZ, 
(b4) KK-’ = i&s = 1, and &l = 0. 

Let us consider the objects E,, that are fully characterized by the rules (al)-(a7) above; 
regarding (al)-(a7) (in which A, should be read as &,) as the axioms for &,, , we define &,, , n E 
Z, as a family of objects generated by the symbols or indeterminates {K, K-I, T, s, 1, 1) with 
the algebraic operations. Here and in the following paragraph, by algebraic operations we 
mean addition, scaling by a real number, multiplication, a,, a,y-’ and l. It is the implication 
of (a6) that a,;’ and 1 cannot act on E,?, n < 2. By definition, rules (such as (bl)-(b4)) not 
following from (al)-(a7) are not available for &,,. 

Letgr,..., gr be independent variables running over E,, , , . . . , En,, respectively. We say 

f(g1, ..‘3 g,) is an &-valued variable algebraically depending on gt , . . . , gr if f (gt , . ., 
gr) is an expression written in terms of {gl, . . . , g,, K, KC’, t, s, 1, 1) with use of the al- 
gebraic operations and if the rules (al)-(a7) supplemented with the condition gi E E,, 
concludef(gi,...,g,) E&. 

We denote by A, the space of scalar fields on BAL having an expression that belongs to 
&. It is easy to see that A, is a subset of A,,. The statements (al)-(a7) and (bl)-(b4) remain 
true even if every A, is read as A,. Moreover, these together with the positive-definiteness 
or at least non-degeneracy of the bi-linear form (35) are all of the fundamental setting we 
need in constructing the theory developed in this paper. 

Proposition 1. Let @ be an R-linear map A1 + & induced from an R-linear map 
El -+ I(&) in the apparent way. If this map is written as @(g) = 1 f(g) with an E2-valued 
variable f(g) algebraically depending on g E El, then there exists h E Al with which one 
can write Q(g) = igh Vg E Al as an equation in A. 
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Proo$ We note the formulae 

s (f&g> = - @?yf), /cfa;‘g) = - /Wlf). 

S(fN=SW 

(22) 

each of which is valid as an equation in & if the left-hand side is given as an &-valued 
variable algebraically depending on f and g. From bi-R-linearity of multiplication and R- 
linearity of a,, 8;’ and J, we see the existence of an expression Q(g) = xi 1 fi (g) with 
fi (g) being E2-valued variables algebraically depending on g E Et such that no additions 
are used in the expression of fi(g). Further, it is possible to suppose g appears in each 
expression [ fi (g) only once because of the R-linearity of @. For such expressions, it is 
apparent how to apply successively formulae (22) to s fi (g) to rewrite it into the form 
J” ghi . This process is justified if one considers the equations in du, while consideration in 
80 is useful in verifying that the expressions s(. . .) appearing in each step make sense as 
&valued variables and eventually in deducing hi E Al. Cl 

Let I,, n E Z, be the R-vector space of tangent fields defined by 7, := { ft+gn+hb 1 f E 
dn_t, g, h E St,). It is easy to see that I, is V,-invariant, i.e., V,(Z) c I,. 

We denote by CJJ the surjection associated with the identification ft - 0 in I,, namely, 
putting N = q(n), B = q(b), we write 

(o(ft+gn+hb) =gN+hB (23) 

for scalar fields f, g, h. The vector spaces q(Z) are left Jlo-modules with f(gN + h B) = 

(fg)N+(fh)B Vf ??-‘b,tJg,h E A,. 
Let X := ~(1;) = {gN + hB I g, h E Al}. Each element of X is referred to as a vector 

field on BAL. Through the injection p : X + Tj defined by 

@(gN + hB) := a;‘(Kg)t + gn + hb, (24) 

a vector field X induces a derivation - variational differential associated with p (X). This 
derivation acting on dn or 7, can be evaluated with formulae (1 l)-(20). 

Proposition 2. The vector spaces d,, and 7, are invariant under the action of the vector 
jields, namely, S,(x) (A,) c d,, and V,(x)(I,) c 7, VX E X, Vn E Z. 

Proofi It is essential that every vector field X = g N + h B is written with g, h E At. Taking 
notice of this situation, we find that formulae (1 l)-(20) ensure the invariance of A, and 7, 
under the action of vector fields. 0 

The space X of vector fields is a Lie algebra, and A, are X-modules. This is an immediate 
consequence of the following theorem. 

Theorem 3. The R-vector space 8 (X) is a Lie algebra with the product 

[x, yl := vxy - v,x vx, y E p(X). (25) 
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For every n E Z, the algebra A,, is a Q (X)-module with the action &, x E 8 (X), namely, 

(6x6, - && - ~~,,,I >f = 0 Vx, y E p(X), Vf E A,, . (26) 

ProojI The statements are verified by using (1 l)-(20). A convenient procedure is as follows: 
First, verify that [x, y] belongs to p(X) for all x, y E Q(X). Second, show Eq. (26) holds 
for f = K, t, s, 1 and then extend (26) to the whole A_, = .A0 U A- 1 U . . . Finally, verify 
the Jacobi identity in Q(X) with the help of (26). 0 

Theorem 3 is quite similar to Theorem 1 of [ 141 in particular in the proof, though the 
considered objects are different. 

To simplify expressions, we put 

?7x :=‘povxs(~)o@ (27) 

VX E X, so that we can write the commutator product of X as 

[X, Y] = ?‘xY - 9,x vx, Y E x. (28) 

Likewise we put 

(FIN +hlB,gzN +hzB)i := g1g2 + hlh2, (29) 

which defines a bi-linear form p(x) x I -+ Ai+j, Then, we have 

%Y = @,(x)(N, Y)I)N + (a,(x)@, Y)I)B + &‘(KN, Y)&V,@(X) 

- (K-‘B> cpV,V.y@(x))~((B, Y)IN - (N, Y)lB) (30) 

for all X, Y E X. 
Let 3 be the subalgebra of Jzo generated by 1, I and the elements of s(A2). The vector 

space F is an X-submodule of Au, i.e., 6 p(x) (n c F VX E X. We denote the action 
of X on F by the left-action, namely, X F = &,(x, F VX E X, VF E 3. This action is a 
derivation: 

X(FG) = (XF)G + F(XG) VX E X, VF, G E 5=. (31) 

Since F c Ao, we see that X is a left .?-module. Taking notice of a, F = 0 VF E F and 
referring((20),weeasilyfindS,(Fx)g = FG,(x)g,Q,v,yY = Fv~Yand?x(FY) = 
(6,(x) F)Y + FexY VF E F, VX, Y E X, Vg E A,. Hence we see 

(FX)G = F(XG) VF, G E F, VX E X, (32) 

Lx(FY) = (LxF)Y -t FLxY VX, Y E X, VF E F’, (33) 

where 

LXY := [X, Y], LxF := XF VX, Y E X, VF E F. (34) 

Below, we construct in the usual, algebraic manner a differential calculus, in which the 
algebra F consisting of functionals on BAL plays the role of the algebra of functions. The 
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construction is based on the pair (F, X) of commutative algebra and Lie algebra. It is 
essential for this construction that F is a left X-module, X is a left F-module, and the 
Eqs. (31)-(33) hold. We would like to make a further remark. Let g : X x X + F be a 
symmetric form defined by 

g(X, Y) := s (X3 Y)l 

with (29). This is bi-F-linear and positive-definite. We refer tog as the Riemannian structure 
on BAL. Given F E F’, the vector field X E X such that Y F = g(X, Y) VY E X is called 
the gradient of F and is denoted by grad F. The existence of the gradient for every element of 
F can be verified by virtue of Propositions 1 and 2. In contrast to the differential calculus on 
finite-dimensional Riemannian manifolds, this seems to be quite non-trivial. This situation 
is necessary for realizing the space of l-forms as a space identifiable with X. 

Let DP, p = 1, 2, . . ., denote the vector space of maps r] : XxP + .F such that 
F := q(Ul, . . . , Up) with Ui = gi N + hi B E X is F-linear in each Ui, skew-symmetric 
(if p 2 2) under the exchange of Ui and Uj, i # j, and expressible as an &-valued variable 
of the form F = j(- . .) algebraically depending on gl , h 1, . . . , g,, hp. Such a map r] E DP 
is referred to as a pth order differential form or p-form on BAL. For the case p = 0, we 
define Do := 3. From Proposition 1 and the non-degeneracy of (35), we see that for every 
l-form 4 there uniquely exists a vector field X such that c(Y) = g(X, Y) VY E X. 

The exterior derivative is a map d : VP + ZY’+’ defined by 

(drl)(Uo, . . .t Up> 

P 
= 

c (-l)‘Uj(n(Uu,. . . , tii,. . . , Up)) 
i=O 

+ C(-l)‘f’n([Ui, Uj], lJ0,. e. 3 iiT. e., tij, . . . , Up) 
iij 

Vq E VP, VUi E X, (36) 

where Ui stands for the absense of Ui . This is a coboundary operator, i.e., d o d = 0. The 
interior product lx : VP+’ --f VP with X E X is defined by 

(IXrl)(Ul, . . . , up> = ?l(X, Ul,. . . , up>. (37) 

The Lie derivative J!ZX in the direction of X E X is an operator acting on each X-module 
consisting of certain 3-vectors, so-called tensor fields, and X I-+ LX provides a represen- 
tation of the Lie algebra X. The definition was already given both on 3 and X in (34). The 
extension to other tensor fields is made by imposing Leibnitz rule. For example, if R is an 
3-linear map X + X, then Lx(RY) = (LxR)Y + RLxY VX, Y E X. For a p-form 7, 
the formula 

Lxq = 1x dn + dlxn (38) 

is available. It is possible to introduce the exterior product, which is, however, not used in 
this paper. 
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4. Structure related to the integrability 

We begin this section with referring to two works [4,5]. 
Let J be the operator X + X, 

J(X) = (B, X)IN - (N, X)lB. (39) 

The operator induces a Poisson structure [4], (F, G) = (J grad F) G VF, G E F, with 
which the vortex filament equation (1) can be understood as a Hamiltonian equation if 1 is 
chosen to be the Hamiltonian functional; indeed 

Kb = @(J gradI). (40) 

Making use of the Hasimoto map, Langer and Perline [5] found that the vector fields 
KB, KJ-‘(KB), (KJ-‘)2(~B), . . . are Hamiltonian flows associated withthe constants of 
motion in involution, where K is defined by 

K(X) = J~V,QJ(X). 

The operator 

R:=KJ-‘=Jo(ooV,,oga 

is referred to as the recursion operator. 

(41) 

(42) 

It should be emphasized that the definition of X given in the preceding section is consistent 
with J, K and R, namely, these operators make sense as F-linear maps X -+ X. 

The following is our fundamental result regarding the integrability of BAL. 

Theorem 4. The recursion operator R deJined by (42) is hereditary. 

Before giving the proof, we recall that for an arbitrary T-linear operator R: X + X the 
term hereditary [6,9] (see also [7,8,11,13]) means absence of the Nijenhuis torsion NR, 

NR(X, Y) := (CRX R - R&x R)Y 

= [RX, RY] - R[RX, Y] - R[X, RY] $ R2[X, Y]. (43) 

Proof: For all X E X, define Vx R : X + X by 

&R)(Y) = $&RY) - R&Y) VY f x, 

which is found to be 

(44) 

(GxR)(Y) = (ai’(~N. RY)l)J-‘RX + (a,‘(RX, RY)I)KB 

by using (30). Substituting the formula above into 

NR(X, Y) = (GRxR)(Y) - R(($xR)(Y) - (X tf Y), 

we find NR = 0. 

(45) 

0 
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We remark that the operator J, J* = - I, is a complex structure; it can be shown by a 
direct calculation that the Nijenhuis torsion of J vanishes, though this fact is not used in 
this paper. 

Since J and K are skew-adjoint, i.e., g(JX, Y) = -g(X, JY), g(KX, Y) = -g(X, 
KY), we can define 2-forms Qn, n = 0, 1, . . . with 

&(X, Y) = .nu(RnX, Y), Qu(X, Y) = g(J-‘X, Y) vx, Y E x. (46) 

It is possible to show that dOo = dS2t = 0 by using (30). Since R is hereditary, this 
extends (see Theorem 3.9 in [ 131 or use (A.3) in Appendix A) to 

dDo= dC?t = dQ*=...=O. (47) 

We note that dQu = 0 is implied in [4], because 00 is the symplectic structure correspond- 
ing to the Marsden-Weinstein Poisson structure. 

As a consequence of (47), in addition to the hereditary property of R, the operators J 
and K are found to form a Hamiltonian pair, a structure implying the integrability [ 131. 
To see this, apply Theorem A.1 in Appendix A to the present case with reading w as .nO 
and understand the identification caused by the Riemannian structure g, making Ho and Z-Z1 
equivalent to J and K, respectively. 

Another fundamental result that we obtained is of master symmetries [6,10]. Let us 
introduce two sequences of vector fields, 

X,=R”@B), n=0,1,2 ,..., (48) 

Y,,=R”-‘(sKB), n=l,2,3 ,... (49) 

The vector fields X, are those given in [5] with a difference in their index (shifted by 2). 
The vector fields Xc, Xt , . . . and Yt , Y2, . . . form a Lie subalgebra of X such that 

r&l, -Ll = 0, (50) 
[Xn, Yml = (n + wfn+?n, (51) 
[Y,, Yml = (n - m)Y,+,. (52) 

To obtain these equations, we need to verify 

LCxoR = 0, Lr, R = -R*, [X,, Y,] = 2x1 (53) 

by direct calculation, e.g., writing (LxR)(Y) = (GxR)(Y) - ORYX + RGyX and apply- 
ing (30) and (45). Then, all Eqs. (50)-(52) follow, since as a consequence of the hereditary 
property of R there exists the identity 

[RmX, R”Y] = -R”(LrRm)X + Rm(LxRn)Y + Rm+n[X, Y] VX, Y E X. 

See e.g., [6,13] for the general consideration. 
Since Xc is the flow of the vortex filament equation, commuting flows X, represent 

symmetries of the equation. These symmetries are generated from Xc by the action of Y, 
as in (51); vector fields Y,, provide master symmetries [lo]. 
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The vector fields X, and Yn act on the 2-forms f12, and the l-forms & := 1~,$2u in the 
following way: 

Isx,.., 52, = 0, Cy,C?, = (3 -m - n)i2nm+n. (54) 

lx,_, Cn = 0, LY,~ = (1 -m - nh+,,, (55) 

For the proof of (54), derive it in the case m = 1, n = 0 by direct calclation, and then use 
the hereditary property of R and the fact d& = 0. Then, (55) follows from (54) and the 
fact d{ = 0, which also is a consequence of (54). 

It is a remarkable consequence of (54) and (55) that the 2-forms Q,,, n = 1,2,4,5, . . 
and the l-forms 5;2, n = 2,3, . . . are exact. Indeed, 0, = dhy, C?,_t/(3 - n) and cn = 
dly,[,+t/(l -n).Fromthelatte~~wecanreadtheexpressionZ~ = &_i(Yi)/(l -n),n = 

2,3, . . . of the constants of motion in involution. With some arguments, this expression is 
found to agree with the inspection of Langer-Perline [5], see also [ 141. We also remark that 
essentially the same method deriving the expression of constants of motion in involution is 
given by Dorfman (see Theorem 7.10 in [ 131) in much more general setting. 

Appendix A. Hereditary operator and Hamiltonian pair 

A hereditary operator and a Hamiltonian pair are closely related to each other. Detailed 
analysis for this situation can be found in [ 131. We, however, present here again a part of 
the results relevant for the present paper. We would like to mention that a generalization - 
minor but requisite for our purpose - is achieved here; in Theorem A. 1 below, we need not 
suppose the operator R is invertible. 

Let R be an T-linear map X + X. If a p-form w, p 3 1, satisfies the condition 

LRYlXU = l)‘lRXW vx, Y E x, 64.1) 

then p-forms o,,, n = 0, 1,2, . . . , such that 

1X0.& = 1RnXW tlx E x 64.2) 

can be introduced. The p-forms w,, introduced in this way obey the same condition as 
in (A. 1). Throughout the appendix, we suppose that p-forms having an index are all intro- 
duced as above for a given F-linear map R and the index runs over non-negative integers. 

We begin with preparation of several formulae. The following (in case on are 2-forms) 
is given in Proposition 3.8 of [13]: 

1~1~ da,+2 - lRYlX dw,+l - lYlRX dwn+l + lRYlRX dw, 

= -lNR(X,Y)h vx, y E x, (A.3) 

where NR is the Nijenhuis torsion (43) of R. To see this, apply the identity L y LX d = 1 y LX - 
13~1~ + d&ylX to the left-hand side of (A.3), and then use the Leibnitz rule ly~Cxw~+i = 
LRyLxw, + i(cXR)YW, of Lie derivative. 
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The next formula is an equation for 2-forms. Suppose w is a 2-form satisfying (A.l). 
Then, 

I(LR~xwA(Y, Z) - w~+~(X, [K 4)) + cycle 

= Idw,WX, K Z) + X(~m+nW, -3) - wm+,([X, Yl, Z> + cycle) 

- 3 do,+,(X, Y, Z) 

= ( dw,(RmX, Y, Z) + cycle] - 2 dw,+,(X, Y, Z) VX, Y, Z E X, (A.4) 

where cycle stands for the cyclic permutation in X, Y, Z. The first equality of (A.4) can 
be verified with the help of the formula ~R”x& = iR”x do, + Lx@,,+,, - ix dw,+, 
VX E X, which is an immediate consequense of (38). The second equality of (A.4) follows 
from the definition (36) of exterior derivative. 

Let us consider the case in which the map X + Dt, X ti ~xw is invertible, so that an 
F-linear map Ho : D’ + X is defined by w(H&, Y) = c(Y) V.$ E D’, VY E X. We put 
Hn := RnHo, n = 0, 1,2, . . . To summarize, 

w(H&, Y) = t(RnY) ‘de E D’, VY E X. CA.3 

It is easy to see that H, are skew-symmetric, i.e., f(Hiq) = -q(Hic) Vc, q E 27’. The 
following is a generalization of Theorem 3.13 in [ 131. 

Theorem A.l. Let R : X + X be a hereditary operator and w a 2-form satisfying (A. I) 
and dm = doI = 0 with (A.2). If Ho, HI, Hz, . . . are F-linear maps D’ + X satisfying 
(AS), then Hm and H,, form a Hamiltonian pair. 

Before giving the proof, let us briefly review the notion of a Hamiltonian operator/pair 
[7,8]. For two skew-symmetric F-linear maps Hm, H,, : 2)’ + A’, the Schouten bracket 
[Hm, H,J : D’ x D’ x 27’ + .F can be introduced [8]. The definition can be written as 

A skew-symmetric F-linear map H : 2)’ --f X is referred to as a Hamiltonian operator if 
[H, H] = 0. A Hamiltonian operator H induces the Poisson structure {F, G) H = (H dF) G 
VF, G E 3. The map H o d associating the functionals with the Hamiltonian vector fields 
is a morphism F + X of Lie algebras. Two Hamiltonian operators Hm and H,, are said to 
form a Hamiltonian pair if [H, , Hn] = 0. 

To prove Theorem A. 1, we show that the equation 

(A.7) 
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is held if R is a hereditary operator. Using the relation [R”X, R”Y] - R”[R”X, Y] = 
R”[X, RnY] - R”+“[X, Y] VX, Y E X (the hereditary property), we can rewrite (A.6) 
into 

+ Cm * n) + cycW, rl, 3;). 

Taking notice of the symmetry under the exchange m tf n and the cyclic permutation, we 
see that the first three terms in the right-hand side sum up to (--_C~,,,~W,)(HOQ, Hoc). Then, 
with the help of (A.4) we obtain (A.7). 

Since R is hereditary, the right-hand side of (A.3) vanishes. Hence dwo = dwl = 0 
asserts dw, = 0 for all non-negative integers n. Therefore, the right-hand side of (A.7) also 
vanishes and we obtain Theorem A. 1 
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